Lemma 1: (cos α + isin α)(cos β + isin β) = cos(α + β) + isin(α + β)
Proof:
(1) cos(α + β) = cos(α)cos(β) - sin(α)sin(β) [See Theorem 2, here]
(2) sin(α + β) = cos(α)sin(β) + cos(β)sin(α) [See Theorem 1, here]
(3) isin(α + β) = cos(α)isin(β) + cos(β)isin(α)
(4) Since isin(α)*isin(β) = -sin(α)sin(β), we have:
cos(α + β) + isin(α + β) =
= cos(α)cos(β) - sin(α)sin(β) + cos(α)isin(β) + cos(β)isin(α) =
= cos(α)[cos(β) + isin(β)] + isin(α)[cos(β) + isin(β)] =
= [cos(α) + isin(α)][cos(β) + isin(β)]
QED
Theorem 1: De Moivre's Formula
(cos α + i sin α)n = cos(nα) + isin(nα) for all α ∈ R.
Proof:
(1) For n=1:
(cos α + i sin α)1 = cos(1*α) + isin(1*α)
(2) Assume that the premise is true for all values up to n such that:
(cos α + i sin α)n = cos(nα) + isin(n&alpha) for all α ∈ R.
(3) (cos α + isin α)n+1 =
(cos α + isin α)n(cos α + isin α)
(4) Using the assumption in step #2, we have:
(cos α + isin α)n(cos α + isin α) =
[cos(n α) + isin(n α)](cos α + isinα)
(5) Using Lemma 1 above, we have:
[cos(n α) + isin(n α)](cos α + isinα) =
cos(n α + α) + isin(nα + α) =
= cos ([n+1]α) + isin([n+1]α)
QED
References
- Jean-Pierre Tignol, Galois' Theory of Algebraic Equations, World Scientific, 2001