At the Geneva Academy, Sturm's strong mathematical ability was recognized by his instructors. One of his teachers, Jean-Jacques Schaub, arranged financial support for young Sturm so he could attend school full time. At the Geneva Academy, Sturm met Daniel Colladon whose friendship and collaboration was an important part of his early work in mathematics.
When Sturm graduated from the Academy, he accepted a position as the tutor to Madame de Stael's youngest son in 1823. Madam de Stael had been a very successful and famous French writer who had died in 1817.
The family spent six months each year in Paris and Sturm was able to join them. Through the family, he was able to meet many of the intellectual luminaries of French society including Dominique Francois Jean Arago, Pierre-Simon Laplace, Simeon Denis Poisson, Jean Baptiste Joseph Fourier, Joseph Louis Gay-Lussac, and Andre Marie Ampere among others.
In 1824, Sturm and Colladon attempted to win a prize offered by the Paris Academy on the compressibility of water. The results were not as expected and Colladon severely injured his hand. They tried again in 1825. This time Sturm got a job tutoring Arago's son and was able to use Ampere's laboratory and received support and advice from Fourier. With all this new help, even if they did not win, they had made significant improvement from the previous year.
The next year, both Sturm and Colladon worked as assistants to Fourier. Additionally, they continued their experiments on the compressability of water and this time, they won the Grand Prix of the Academies de Sciences. The prize money was enough that they could stay in Paris and devote themselves to their research.
In 1829, Sturm published what would become one of his most famous papers: Mémoire sur la résolution des équations numériques. In it, he presented a major simplification of a method discovered by Cauchy to identify the number of real roots that an equation had over a specified interval. His method was largely based on methods from Fourier but the result was undeniably impressive. Her is Hermite's response:
Sturm's theorem had the good fortune of immediately becoming a classic and of finding a place in teaching that it will hold forever. His demonstration, which utilises only the most elementary considerations, is a rare example of simplicity and elegance.Despite the well-received paper, Sturm had trouble finding work until the revolution of 1830. With the help of Arago, Sturm became professor of mathematics at the College Rollin. Three years later, he became a French citizen and three years after that he was admitted to the Academie des Sciences.
He would make significant contributions to differential equations relating to Poisson's theory of heat. Today, this work along with with the work done by Liouville form what is known as Sturm-Liouville Theory. Later in his career, he was professor at the Ecole Polytechnique. He made contributions to infinitesimal geometry, projective geometry, differential geometry, and geometric optics.
He died on December 18, 1855 in Paris.
References
- "Jacques Charles Francois Sturm", MacTutor
Hi Edgar,
ReplyDeleteI would appreciate it if you moved these comments to the main section titled False Proofs.
This section is for discussion about the history of math.
This is not the right place for discussions about false proofs.
Thanks,
-Larry
Ok, Larry, please delete my last post here.
ReplyDeleteThanks.
E. E. Escultura