Lemma 1: (cos α + isin α)(cos β + isin β) = cos(α + β) + isin(α + β)
Proof:
(1) cos(α + β) = cos(α)cos(β) - sin(α)sin(β) [See Theorem 2, here]
(2) sin(α + β) = cos(α)sin(β) + cos(β)sin(α) [See Theorem 1, here]
(3) isin(α + β) = cos(α)isin(β) + cos(β)isin(α)
(4) Since isin(α)*isin(β) = -sin(α)sin(β), we have:
cos(α + β) + isin(α + β) =
= cos(α)cos(β) - sin(α)sin(β) + cos(α)isin(β) + cos(β)isin(α) =
= cos(α)[cos(β) + isin(β)] + isin(α)[cos(β) + isin(β)] =
= [cos(α) + isin(α)][cos(β) + isin(β)]
QED
Theorem 1: De Moivre's Formula
(cos α + i sin α)n = cos(nα) + isin(nα) for all α ∈ R.
Proof:
(1) For n=1:
(cos α + i sin α)1 = cos(1*α) + isin(1*α)
(2) Assume that the premise is true for all values up to n such that:
(cos α + i sin α)n = cos(nα) + isin(n&alpha) for all α ∈ R.
(3) (cos α + isin α)n+1 =
(cos α + isin α)n(cos α + isin α)
(4) Using the assumption in step #2, we have:
(cos α + isin α)n(cos α + isin α) =
[cos(n α) + isin(n α)](cos α + isinα)
(5) Using Lemma 1 above, we have:
[cos(n α) + isin(n α)](cos α + isinα) =
cos(n α + α) + isin(nα + α) =
= cos ([n+1]α) + isin([n+1]α)
QED
References
- Jean-Pierre Tignol, Galois' Theory of Algebraic Equations, World Scientific, 2001
1 comment:
I need some help.
I have to find examples of different problems easily solved using De Moivre Formula or Roots of Unity (geometry, trig., De Moivre Formula together with Binomial Formula???).
Any piece of advice would be usefull.
As soon as possible. Literally.
Post a Comment